Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 666: 141-150, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593649

RESUMO

The defects and interface engineering are efficient approaches to adjust the physical and chemical properties of nanomaterials to enhance catalytic performance. In this study, we report a new MOFs-driven porous Cu2S/MoS2-Vs octahedral semiconductor with heterostructure and photothermal effect. The introduction of sulfur vacancies directly improves the adsorption performance of CO2, and the formation of heterostructure significantly increases the charge transfer rate. The C-penetrating material obtained from MOFs not only acts as an octahedral skeleton support, but also gives photothermal effects under photoelectric conditions. The formation rate of sole C2 products in photoelectrocatalytic CO2 reduction by using Cu2S/MoS2-Vs heterostructure is up to 52 µM·h-1·cm-2 equal to the total electron transfer rate of 541 µM·h-1·cm-2. The carbene mechanism and reaction pathways were proposed and verified by 13CO2 isotopic labelling and operando Fourier transform infrared (FT-IR) spectra. The important intermediates of *CO2-, *CO, *CHO and *CHO-CHO were identified by operando FT-IR spectra. In the comparative experiments, the photothermal electrons are beneficial to C2 products. DFT calculations indicate that the presence of S vacancies (Vs) reduces the energy barrier for product generation.

2.
Anal Chim Acta ; 1287: 342047, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182363

RESUMO

Based on TiO2 nanorod arrays@PDA/Ag (TNRs@PDA/Ag), a better surface-enhanced Raman scattering (SERS) sensor with effective enrichment and enhancement was investigated for duplex SERS detection of illicit food dyes. Biomimetic PDA functions as binary mediators by utilizing the structural characteristics of polydopamine (PDA), which include the conjugated structure and abundant hydrophilic groups. One PDA functioned as an electron transfer mediator to enhance the efficiency of electron transfer, and the other as an enrichment mediator to effectively enrich rhodamine B (RhB) and crystal violet (CV) through hydrogen bonding, π-π stacking, and electrostatic interactions. Individual and duplex detection of illicit food dyes (RhB and CV) was performed using TNRs@PDA/Ag to estimate SERS applications. Their linear equations and limits of detection of 1 nM for RhB and 5 nM for CV were derived. Individual and duplex food colour detection was successfully accomplished even in genuine chili meal with good results. The bifunctional TNRs@PDA/Ag-based highly sensitive and duplex SERS dye detection will have enormous potential for food safety monitoring.


Assuntos
Corantes de Alimentos , Nanotubos , Corantes , Biomimética , Violeta Genciana
3.
Mikrochim Acta ; 191(1): 1, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38040940

RESUMO

A polyvinylpyrrolidone-capped (PVP-capped) strategy is reported to synthesize Ag NPs on silicon wafers via galvanic replacement reaction for SERS detection of adenine, where PVP acts as stabilizing agent in synthesis and efficient enrichment in detection. The morphologies of Ag NPs are optimized with uniform particle size by adjusting synthesis conditions, which hold excellent SERS performances like a high enhancement factor of 1.42 × 106, good uniform, reproducibility, and transferable nature. With the protection of the capped PVP, the Ag NPs keep excellent SERS properties even against harsh conditions of high temperature (100 ℃) and strong acid and base for 24 h. Utilizing the structural feature of PVP with abundant carbonyl groups, the PVP-capped Ag NPs achieve efficient enrichment of adenine through hydrogen bonding and π-interactions, which is analyzed by density functional theory. Quantitative detection of adenine is performed with a wide linear range from 10-4 to 10-8 M and a low limit of detection of 1 nM. Detection of adenine in human urine samples is achieved with a recovery of 99.1-103.4% and an RSD of less than 5%.

4.
J Cancer Res Clin Oncol ; 149(9): 6315-6328, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36745223

RESUMO

PURPOSES: Increased number of studies reveal the crucial role of the Cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway in anti-tumor immunity. In this study, we aim to explore the effect of cGAS/STING on tumor immune microenvironment of melanoma after carbon ion radiotherapy (CIRT) and the underlying mechanism. METHODS: C57BL/6 mouse tumor models were used to evaluate the efficacy of different treatments (X-ray, carbon ion, PD-L1 inhibitor and combination therapies) on tumor growth and process. Mass cytometry was performed to assess tumor-infiltrating lymphocytes (TILs). DNA damage response (DDR) and cGAS/STING pathway were investigated by immunofluorescence-co-localization assays, γ-H2AX, P53-binding protein 1 (53BP1), Breast Cancer 1 (BRCA1), and cGAS measurements. RESULTS: Carbon ion irradiation caused more DNA damages and cGAS-STING pathway activation compared with X-ray irradiation, and the former slowed the melanoma growth in syngeneic model. Although X-ray irradiation is not sensitive for melanoma treatment, carbon ion irradiation showed a significant anti-tumor effect for melanoma treatment. TILs analysis revealed that CIRT boosted the infiltration of natural killer (NK), CD4+, and CD8+ T cells, meanwhile increased the number of immune checkpoint (programmed death-1, PD-1, lymphocyte activation gene 3, LAG-3 and T-cell immunoglobulin and mucin domain-containing protein 3, TIM-3). Moreover, CIRT increased PD-L1 exposure on cell surface compared with X-ray group. Furthermore, CIRT combined with PD-L1 inhibitor therapy increased the number of T cells and NK cells in melanoma, and slowed the growth of melanoma compared with other therapies. CONCLUSIONS: Our findings showed that CIRT displayed biological effects by increasing DNA damages of tumor cells and improving immunity in melanoma, which indicated that CIRT might be a potential synergetic treatment for radiotherapy and radioimmunotherapy in melanoma patients. Our works put forward a new insight to provide an effective strategy for melanoma therapy. These findings may help in the design of strategies on melanoma in clinical studies.


Assuntos
Radioterapia com Íons Pesados , Melanoma , Animais , Camundongos , Linfócitos T CD8-Positivos , Microambiente Tumoral , Inibidores de Checkpoint Imunológico , Camundongos Endogâmicos C57BL , Melanoma/genética , Melanoma/radioterapia , Melanoma/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Dano ao DNA
5.
Neuroscience ; 480: 19-31, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34774969

RESUMO

RAD6B is an E2 ubiquitin-conjugating enzyme, playing an important role in DNA damage repair, gene expression, senescence, apoptosis and protein degradation. However, the specific mechanism between ubiquitin and retinal degeneration requires more investigation. Pigment epithelium-derived factor (PEDF) has a potent neurotrophic effect on the retina, protecting retinal neurons and photoreceptors from cell death caused by pathological damage. In this study, we found that loss of RAD6B leads to retinal degeneration in mice, especially in old age. Affymetrix microarray analysis showed that the PEDF signal was changed in RAD6B deficient groups. The expression of γ-H2AX, ß-Gal, P53, Caspase-3, P21 and P16 was increased significantly in retinas of RAD6B knockout (KO) mice. Our studies suggest that RAD6B and PEDF play an important role in the health of retina, whereas the absence of RAD6B accelerates the degeneration.


Assuntos
Degeneração Retiniana , Serpinas , Animais , Proteínas do Olho/genética , Camundongos , Fatores de Crescimento Neural/genética , Retina , Serpinas/genética
6.
Anal Chem ; 93(7): 3403-3410, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33556238

RESUMO

Rapid, quantitative, and group-targeting detection of total benzodiazepines (BZDs) is critical to create an accurate judgement in emergent medical and forensic settings. Large-size (111) faceted Ag nanosheets decorated with small ZnO nanoparticles were designed as the prominent surface-enhanced Raman scattering substrate, which possessed advantages of specific metal facets and additional charge-transfer (CT) effect from the semiconductor. The vital and bridge role of ZnO in the CT effect was systematically studied via experimental investigations and molecular dynamics simulation, which proves the essentiality of an appropriate ZnO decoration density. Upon determining optimal Ag NS/ZnO hybrids, a calibration curve of estazolam was established with a 0.5 nM detection limit. Based on the obtained curve, group-targeting screening was achieved toward total concentrations of five BZDs (estazolam, oxazepam, alprazolam, triazolam, and lorazepam). Importantly, the total concentrations of BZDs in mice serum were accurately monitored with changing analytical time during the metabolic process, which was in agreement with the tendency measured by liquid chromatography with tandem mass spectrometry.

7.
Talanta ; 222: 121544, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33167251

RESUMO

96-Well technology is associated with automated sample preparation and simultaneous analysis based on the low-cost well plate format. To explore the potential applications of 96-well technology in SERS detection, we examined the surface-bound electroless deposition procedure for the preparation of uniform and stable Ag mirror films on polydopamine (PDA)-coated well plates as active-SERS substrates. In the presented procedure, small Ag seeds assembled on PDA coating were employed as the surface-bound catalyst and provided the active sites for electroless Ag deposition. The high-quality Ag mirror films showed high performance in terms of sensitivity, uniformity, reproducibility and stability using rhodamine 6G (R6G) as the probe molecule. A remarkable enhancement factor of 3.41 × 108 was obtained. The relative standard deviations against well-by-well and batch-by-batch reproducibility were less than 5%. The SERS films on well plates were successfully used to quantify the amounts of organic dyes (R6G and malachite green) in environmental water samples and small biological molecules (adenosine triphosphate and adenine) in urine matrix, displaying satisfactory sensitivity, selectivity and recovery. Their limit of detection values were at nanomolar, even picomolar concentration.

8.
Sci Total Environ ; 696: 134013, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31465923

RESUMO

This paper reports the chemical synthesis of highly-active Mn3O4/PdCu nanocomposites coated with N-doped carbon (NC) shell using polydopamine (PDA) as the carbon source, which provides high specific surface area and pore volume. The structure and morphology of Mn3O4/PdCu@NC nanocomposites were systematically studied. Taking advantage of the synergistic effects of PdCu alloy and Mn3O4 support, the Mn3O4/PdCu@NC catalyst exhibited an outstanding activity toward the reduction of 4-nitrophenol (4-NP), in comparison to Mn3O4/PdM@NC (M = Ni, Au, Ag), Mn3O4/PdCu@PDA, and commercial Pd/C catalyst. Owing to the protection by NC shell, the as-prepared catalyst showed stable conversion efficiency of up to 90% over ten successive cycles. Considering 4-NP as one of the important organic pollutants from industrial production, the effects of various inorganic and organic species on the catalytic efficiency were further tested and most of them had negligible impact. This strategy of utilizing an N-doped carbon shell could be extended to obtain PdCu alloys supported on other metal oxides, making it applicable for applications in treatment of environmental pollutants.

9.
Talanta ; 204: 372-378, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31357308

RESUMO

Nanocomposites of graphene oxide/poly (diallyldimethyl ammonium chloride)/Ag nanoparticles (GO/PDDA/Ag NPs) were constructed via a self-assembly process as a surface-enhanced Raman scattering (SERS) substrate, in which functional macromolecules PDDA were utilized to load GO and support Ag NPs. Fundamental SERS performance of this SERS substrate was evaluated using rhodamine 6G (R6G), which displayed excellent enhancement effect, transferable nature and high stability of the synthesized GO/PDDA/Ag NPs substrate. Furthermore, the synthesized SERS substrate was employed in the sensitive detection of adenine with a linear range of 0.05-1000 µM and low detection limit of 1 nM. Other than the large surface area of GO, multiple-hydrogen bond interactions between adenine and the modified PDDA were another important factor in capturing adenine molecules and enhancing SERS signal. The hydrogen bond interaction was calculated using quantum mechanical calculations. Moreover, determination of adenine in aqueous solutions was achieved with good anti-interference ability against other nucleic bases with similar structures, such as guanine, cytosine and thymine. Therefore, GO/PDDA/Ag can be anticipated to be a potential substrate for label-free, fast and sensitive SERS detection of adenine in the field of bioanalysis.

10.
J Colloid Interface Sci ; 552: 72-83, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31103892

RESUMO

In this study, a well-dispersed Pd nanoparticle (NP)-supported RGO/Mn3O4 (G/M/Pd) composite was synthesized by a clean synthetic route, where galvanic replacement reaction simply occurred between Mn3O4 and a palladium salt, thereby avoiding the use of harsh reducing and capping agents. The G/M/Pd composite served as a robust catalyst for the catalytic oxidation of hydroquinone (HQ) to benzoquinone (BQ) with H2O2 in an aqueous solution. Oxidation was completed in only 4 min, with a turnover frequency (TOF) of 3613 h-1; this TOF is one hundred times those of previously reported Pd- and Ag-based catalysts. The superior performance was related to the electronic inductive effect between Mn3O4 and Pd NPs, which was verified by density functional theory calculations. Trapping experiments revealed that the oxidation of HQ was considerably related to the ·OH radicals generated from the decomposition of H2O2. In addition, the influencing factors were further investigated, including catalyst and HQ concentrations, solution pH, solvents, and various inorganic and organic interferences. Moreover, the G/M/Pd catalyst exhibits diverse applications for the catalytic oxidation of HQ derivatives with high TOFs.

11.
Mikrochim Acta ; 186(1): 46, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30610467

RESUMO

CeO2-encapsulated gold nanoparticles (AuNPs) were anchored to reduced graphene oxide (RGO/Au@CeO2) by an interfacial auto-redox reaction in a solution containing tetrachloroauric acid and Ce(III) on a solid support. The resulting material was placed on a glassy carbon electrode (GCE) and used as an electrochemical hydrazine sensor at trace levels. The electrocatalytic activity of the modified GCE towards hydrazine oxidation was significantly enhanced as compared to only RGO/CeO2, or CeO2-encapsulated AuNPs, or AuNPs loaded on CeO2 modified with RGO. This enhancement is attributed to the excellent conductivity and large surface area of RGO, and the strong interaction between the reversible Ce4+/Ce3+ and Auδ+/Au0 redox systems. The kinetics of the hydrazine oxidation was studied by electrochemical methods. The sensor, best operated at a peak voltage of 0.35 V (vs. saturated calomel electrode), had a wide linear range (that extends from 10 nM to 3 mM), a low detection limit (3.0 nM), good selectivity and good stability. It was successfully employed for the monitoring of hydrazine in spiked environmental water samples and to in-vitro tracking of hydrazine in cells with respect to its potential cytotoxicity. Graphical abstract CeO2-encapsulated gold nanoparticles anchored on reduced graphene oxide with the strong interaction between the reversible Ce4+/Ce3+ and Auδ+/Au0 reductions can be used for sensitive detection of hydrazine with detection limit of 3 nM and good selectivity in environmental and biological samples.


Assuntos
Técnicas Eletroquímicas/métodos , Grafite/química , Hidrazinas/análise , Nanopartículas Metálicas/química , Cério/química , Técnicas Eletroquímicas/normas , Eletrodos , Ouro , Limite de Detecção , Oxirredução , Óxidos
12.
J Colloid Interface Sci ; 537: 554-561, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30471610

RESUMO

A colorimetric assay is described for sensitive determination of Hg2+ ions based on the MoS2-Au composites as peroxidase mimetics, which are synthesized by microwave-assisted solvothermal method. The addition of Hg2+ stimulates their peroxidase-like activity, along with lower Michaelis constant toward the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) with H2O2, allowing the composites for direct determination of Hg2+. A broad linear response is obtained ranging from 20 nM to 20 µM with a detection limit (LOD) of 5 nM. The superior peroxidase-like activity is attributed to the large surface area of MoS2 nanosheets and the synergistic catalytic effect of MoS2 and Au. The Hg2+-stimulation effect implies the strong interaction between Hg2+ and MoS2-Au, where the XPS results confirm the presence of metallic Hg0, indicative of an Au-Hg amalgam. This colorimetric assay is successfully applied for the determination of Hg2+ in environmental water (tap water and Yellow River water) with excellent selectivity over interfering cations.


Assuntos
Materiais Biomiméticos/metabolismo , Biomimética , Dissulfetos/metabolismo , Ouro/metabolismo , Mercúrio/análise , Molibdênio/metabolismo , Peroxidase/metabolismo , Poluentes Químicos da Água/análise , Materiais Biomiméticos/química , Colorimetria , Dissulfetos/química , Monitoramento Ambiental , Ouro/química , Mercúrio/farmacologia , Molibdênio/química , Tamanho da Partícula , Peroxidase/química , Propriedades de Superfície
13.
Anal Chem ; 90(16): 9805-9812, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30051706

RESUMO

Clean cabbagelike (111) faceted silver crystals were synthesized via a facile galvanic replacement reaction of [Ag(NH3)2]OH and a commercial aluminum foil, a surfactant-free formation process. The cabbagelike silver crystals consisted of interconnected nanoplates and exhibited a single-crystal structure along with preferential (111) facet oriented growth. These silver crystals showed high and reliable surface-enhanced Raman scattering (SERS) activity due to electromagnetic mechanism, and they could be easily transferred onto other rigid or flexible surfaces, making their SERS applications more versatile. Since Ag (111) with low surface energy could preferentially adsorb papaverine molecules, which was verified by molecular dynamics simulation, the cabbagelike silver crystals were further employed as a promising SERS assay for efficient sensing of papaverine, a nonnarcotic alkaloid. A linear range of 0.1-1000 µM was achieved, along with a detection limit of 10 nM and good selectivity relative to other excitability drugs. This SERS assay has successfully been used to determine the concentration of papaverine in hot pot seasonings and drugs with satisfactory recoveries and relative standard deviations.

14.
Phys Chem Chem Phys ; 20(16): 11386-11395, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29645034

RESUMO

The characters of σ- and π-holes of bromopentafluorobenzene (C6F5Br) enable it to interact with an electron-rich atom or group like pyridine which possesses an electron lone-pair N atom and a π ring. Theoretical studies of intermolecular interactions between C6F5Br and C5H5N have been carried out at the M06-2X/aug-cc-pVDZ level without and with the counterpoise method, together with single point calculations at M06-2X/TZVP, wB97-XD/aug-cc-pVDZ and CCSD(T)/aug-cc-pVDZ levels. The σ- and π-holes of C6F5Br exhibiting positive electrostatic potentials make these sites favorably interact with the N atom and the π ring of C5H5N with negative electrostatic potentials, leading to five different dimers connected by a σ-holen bond, a σ-holeπ bond or a π-holeπ bond. Their geometrical structures, characteristics, nature and spectroscopy behaviors were systematically investigated. EDA analyses reveal that the driving forces in these dimers are different. NCI, QTAIM and NBO analyses confirm the existence of intermolecular interactions formed via σ- and π-holes of C6F5Br and the N atom and the π ring of C5H5N. The experimental IR and Raman spectra gave us important information about the formation of molecular complexes between C6F5Br and C5H5N. We expect that the results could provide valuable insights into the investigation of intermolecular interactions involving σ- and π-holes.

15.
Analyst ; 142(18): 3459-3467, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28829076

RESUMO

In shell-isolated nanoparticle (NP)-enhanced Raman spectroscopy (SHINERS), traditional metal oxide-based shells have inferior chemical inertness, they require strict preparation conditions, and lack specific groups, which lead to their poor selectivity toward target molecules. In this study, ultrathin and compact gold (Au)@polydopamine (PDA) SHINERS NPs were successfully fabricated by a simple self-polymerization technique. High wrapping tendency of PDA, a multifunctional biopolymer, favored the fabrication process. Au@PDA NPs exhibited a typical shell-isolated effect, i.e., Au@PDA NPs with a thick shell (more than 2.3 nm) showed a lower SERS activity, while those with an ultrathin (1.3 nm) shell exhibited higher SERS activity compared to uncoated Au NPs. The Au@PDA SHINERS substrate shows high performance in terms of sensitivity, uniformity, and stability. The relative standard deviations (RSDs) of SERS intensities from ten positions on the same substrate were less than 4%. Their Raman intensities dropped by only 15% over two months. More importantly, the Au@PDA (1.3 nm) SHINERS substrate exhibited high SERS activity for label-free and quantitative detection of benzotriazole (BTA), an important corrosion inhibitor, through utilizing a presumed π-π stacking interaction. A broad linear range from 10-4 to 10-8 M was achieved with a low detection limit (LOD) of 1 nM (0.119 µg L-1). The LOD was not only significantly lower than the maximum allowable level (20 µg L-1) of the Australian government water guide, but also lower than that of some modern methods such as fluorescence, liquid chromatography, and gas chromatography coupled with mass spectrometry. Furthermore, the substrate showed excellent discrimination against other compounds with a single aromatic ring. It is expected that the Au@PDA SHINERS substrate will offer great potential for analysis application in a complicated environmental system.

16.
Sci Rep ; 7: 40784, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28106096

RESUMO

Here, W(NxS1-x)2 nanoflowers were fabricated by simple sintering process. Photocatalytic activity results indicated our fabricated N-doped WS2 nanoflowers shown outstanding photoactivity of degradating of rhodamine B with visible light. Which is attributed to the high separation efficiency of photoinduced electron-hole pairs, the broadening of the valence band (VB), and the narrowing of energy band gap. Meanwhile, our work provided a novel method to induce surface sulfur vacancies in crystals by introduing impurities atoms for enhancing their photodegradation.

17.
Nanotechnology ; 27(22): 225403, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27108967

RESUMO

In this paper, the photocatalytic performance and reusability of N-doped MoS2 nanoflowers with the specific surface area of 114.2 m(2) g(-1) was evaluated by discoloring of RhB under visible light irradiation. Results indicated that the 20 mg fabricated catalyst could completely degrade 50 ml of 30 mg l(-1) RhB in 70 min with excellent recycling and structural stability. The optimized N-doped MoS2 nanoflowers showed a reaction rate constant (k) as high as 0.06928 min(-1) which was 26.4 times that of bare MoS2 nanosheets (k = 0.00262). In addition, it was about seven times that of P25 (k = 0.01) (Hou et al 2015 Sci. Rep. 5 15228). The obtained outstanding photocatalytic performance of N-doped MoS2 nanoflowers provides potential applications in water pollution treatment, as well as other related fields.

18.
ACS Appl Mater Interfaces ; 8(5): 2994-3002, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26788813

RESUMO

Palladium-cobalt alloy nanoparticles were synthesized and dispersed on carbon black support, aiming to have a less expensive catalyst. Catalytic behaviors of PdCo/C catalyst for the oxidation of hydroquinone (HQ) with H2O2 in aqueous solution were evaluated using high-performance liquid chromatography (HPLC). The results revealed that PdCo/C catalyst had better catalytic activity than an equal amount of commercial Pd/C and Co/C catalysts because of the d-band hybridization between Pd and Co. The effects of pH value, solvent, and various interferents including inorganic and organic compounds on the efficiency of HQ oxidation were further investigated. Furthermore, on the basis of mixed potential theory, comprehensive electrochemical measurements such as the open-circuit potential-time (OCP-t) technique and Tafel plot were efficient to assess the catalytic activity of the catalyst, and the results obtained were consistent with those of HPLC measurements. The efficient HQ oxidation was closely associated with the catalytic activity of PdCo nanoparticles because they accelerated the electron-transfer process and facilitated the generation of OH radicals.

19.
Talanta ; 93: 320-5, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22483917

RESUMO

Poly(l-arginine)/graphene composite film modified electrode was successfully prepared via a facile one-step electrochemical method and used for simultaneous determination of uric acid (UA), xanthine (XA) and hypoxanthine (HX). The electrochemical behaviors of UA, XA and HX at the modified electrode were studied by cyclic voltammetry and differential pulse voltammetry (DPV), and showed that the modified electrode exhibited excellent electrocatalytic activity toward the oxidation of the three compounds. The calibration curves for UA, XA and HX were obtained over the range of 0.10-10.0, 0.10-10.0 and 0.20-20.0 µM by DPV, respectively and the detection limits for UA, XA and HX were 0.05, 0.05 and 0.10 µM (S/N=3), respectively. With good selectivity and high sensitivity, the modified electrode has been applied to simultaneous determination of UA, XA and HX in human urine with satisfactory result.


Assuntos
Eletroquímica/métodos , Grafite/química , Hipoxantina/análise , Peptídeos/química , Ácido Úrico/análise , Xantina/análise , Eletrodos , Humanos , Concentração de Íons de Hidrogênio , Hipoxantina/química , Hipoxantina/urina , Modelos Lineares , Oxirredução , Óxidos/química , Reprodutibilidade dos Testes , Fatores de Tempo , Ácido Úrico/química , Ácido Úrico/urina , Xantina/química , Xantina/urina
20.
Biodegradation ; 23(2): 209-19, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21809019

RESUMO

An aerobic microorganism with an ability to utilize phenol as sole carbon and energy source was isolated from phenol-contaminated wastewater samples. The isolate was identified as Bacillus amyloliquefaciens strain WJDB-1 based on morphological, physiological, and biochemical characteristics, and 16S rDNA sequence analysis. Strain WJDB-1 immobilized in alginate-chitosan-alginate (ACA) microcapsules could degrade 200 mg/l phenol completely within 36 h. The concentration of phenol was determined using differential pulse voltammetry (DPV) at glassy carbon electrode (GCE) with a linear relationship between peak current and phenol concentration ranging from 2.0 to 20.0 mg/l. Cells immobilized in ACA microcapsules were found to be superior to the free suspended ones in terms of improving the tolerance to the environmental loadings. The optimal conditions to prepare microcapsules for achieving higher phenol degradation rate were investigated by changing the concentrations of sodium alginate, calcium chloride, and chitosan. Furthermore, the efficiency of phenol degradation was optimized by adjusting various processing parameters, such as the number of microcapsules, pH value, temperature, and the initial concentration of phenol. This microorganism has the potential for the efficient treatment of organic pollutants in wastewater.


Assuntos
Alginatos/farmacologia , Bacillus/citologia , Bacillus/metabolismo , Quitosana/farmacologia , Eletroquímica/métodos , Microesferas , Fenol/metabolismo , Bacillus/efeitos dos fármacos , Bacillus/ultraestrutura , Biodegradação Ambiental/efeitos dos fármacos , Células Imobilizadas/citologia , Células Imobilizadas/efeitos dos fármacos , Células Imobilizadas/metabolismo , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/farmacologia , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Dados de Sequência Molecular , Filogenia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...